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The problem: 
Studies of natural systems must be conducted in a way that balances research funds with the level of detail 
necessary to understand the system. Thus, the scale of the study must be balanced against the required 
detail. We have developed a framework for performing studies of natural systems that weaves geologic, 
hydrologic, and geochemical information. The most important feature of this approach is the constant 
interplay between scientists of each specialty, so that the field work produces the most representative 
results possible. 
We begin by examining the spatial scales over which system properties and processes are important, and 
compare those to the spatial scales over which our observations of the system are relevant. In this example, 
we are studying the geochemical effects of mineral deposits that may generate metal-rich drainage, so the top 
scale bar in each figure below is labelled “deposit drainage.” We are concerned with mineral deposits occurring 
in fractured rocks; the fractures represent the principal conduits for fluid flow in the geologic past (deposit 
formation) and in the present (deposit weathering). 
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Developing a field strategy from a regional-scale geologic model:

Our approach to field work begins by formulating a geologic model that describes the tectonic history and

fracture evolution in the study area. Our field area is in north-central Nevada, in the Osgood Mountains.
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We begin with field geologic 
observations of the orientations and 
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kinematic indicators for fractures 
and faults. Our data showed three 
major fracture/fault orientations: a 
NNW set with right-lateral offset; a 
NE set with left-lateral offset, and 
an E-W set of structures including 
fractures and dikes. 
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Field results at a variety of spatial scales:

(information in colored boxes corresponds to locations on map in center)


A
 In the upper reaches of Granite 
Creek, NE-trending fractures in


outcrop intersect the stream at the

point shown in this photo. Hydraulic


head measurements from 30 cm 
Potentiometric head 

of ground water below the streambed showed this to 
Potentiometric head be a losing reach, with approximately 

of surface water 
-15 cm of head relative to the stream


Sediment 
surface. The geologic model predicts


surface that the NE trending fractures
should be hydraulically conductive. 

} Screened Interval, approx. 3 cm
Head measurements are made using 
the device shown at left (Wanty and 

Winter, 2000). 
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Granite Creek flows to the SE, roughly


along the probable trace of a major NW-

trending structure. Neuerberg (1966)


found an elongated zone of pyrite

enrichment in the Osgood intrusive rocks

along Granite Creek. From the upstream


reaches to the downstream sample 
point, flow increased by more than 5 

times, conductivity increased from 210 
to 240 ms, and greater than 2x changes 

in concentrations were observed for Cl, B,

K, Ba, Mg, Na, Sr, and Mn. No surface-
water tributaries were observed along 

this reach of the stream. These changes 
are consistent with ground water 

discharge from altered rocks. 

C 
During one sampling trip in 1999, we
observed a dramatic increase in the
discharge of Osgood Creek as it crossed 
the Osgood Fault (green dashed line). 
At the same place, the conductivity
decreased from >300 ms to 250 ms,

documenting the discharge of ground
water along the Osgood Fault.
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This spring issues from a ridgetop above Rocky
Creek. An east-trending dike with sheeted
easterly fractures provided the conduit for this 
unusual flow. The dike is clearly seen in the aerial
photograph as a light line forming the ridge.

E The surface expression of the

Getchell Fault is clearly seen in this

shaded relief image. Also shown on


the figure to the right are the major

streams we sampled. 
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There is a compositional difference in waters
collected from the northern (pink squares) and

southern (green squares) lobes of the Osgood

intrusive rocks. Sulfur isotope data are shown

above as an example, but many other dissolved 

constituents show a similar pattern, with a 
relatively narrow variability from southern-lobe


samples and more extreme values in the

northern lobe. We are investigating whether


there is a similar variability in rock chemistry.
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Explanation:


Locations ofIntrusive rocks 
water samples


Areas of pyritic Locations of 
alteration mines (mostly W-skarns) 
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